Zhong, B; Wu, SL; Yang, AX; Ao, K; Wu, JH; Wu, JJ; Gong, XS; Wang, HB; Liu, QH (2020). An Atmospheric Correction Method over Bright and Stable Surfaces for Moderate to High Spatial-Resolution Optical Remotely Sensed Imagery. REMOTE SENSING, 12(4), 733.
Abstract
Although many attempts have been made, it has remained a challenge to retrieve the aerosol optical depth (AOD) at 550 nm from moderate to high spatial-resolution (MHSR) optical remotely sensed imagery in arid areas with bright surfaces, such as deserts and bare ground. Atmospheric correction for remote-sensing images in these areas has not been good. In this paper, we proposed a new algorithm that can effectively estimate the spatial distribution of atmospheric aerosols and retrieve surface reflectance from moderate to high spatial-resolution imagery in arid areas with bright surfaces. Land surface in arid areas is usually bright and stable and the variation of atmosphere in these areas is also very small; consequently, the land-surface characteristics, specifically the bidirectional reflectance distribution factor (BRDF), can be retrieved easily and accurately using time series of satellite images with relatively lower spatial resolution like the Moderate-resolution Imaging Spectroradiometer (MODIS) with 500 m resolution and the retrieved BRDF is then used to retrieve the AOD from MHSR images. This algorithm has three advantages: (i) it is well suited to arid areas with bright surfaces; (ii) it is very efficient because of employed lower resolution BRDF; and (iii) it is completely automatic. The derived AODs from the Multispectral Instrument (MSI) on board Sentinel-2, Landsat 5 Thematic Mapper (TM), Landsat 8 Operational Land Imager (OLI), Gao Fen 1 Wide Field Viewer (GF-1/WFV), Gao Fen 6 Wide Field Viewer (GF-6/WFV), and Huan Jing 1 CCD (HJ-1/CCD) data are validated using ground measurements from 4 stations of the AErosol Robotic NETwork (AERONET) around the world.
DOI:
10.3390/rs12040733
ISSN: