Seong, NH; Jung, D; Kim, J; Han, KS (2020). Evaluation of NDVI Estimation Considering Atmospheric and BRDF Correction through Himawari-8/AHI. ASIA-PACIFIC JOURNAL OF ATMOSPHERIC SCIENCES, 56(2), 265-274.

Satellite-based vegetation indices are an essential element in understanding the Earth's surface. In this study, we estimated the normalized difference vegetation index (NDVI) using Himawari-8/Advanced Himawari Imager (AHI) data and analyzed the sensitivity of products to atmospheric and surface correction. We used the Second Simulation of a Satellite Signal in the Solar Spectrum (6S) radiative transfer model for atmospheric correction, and kernel-based semi-empirical bidirectional reflectance distribution function (BRDF) model to remove surface anisotropic effects. From this, top-of-atmosphere, top-of-canopy, and normalized NDVIs were produced. A sensitivity analysis showed that the normalized NDVI had the lowest number of missing values compared with the others and almost no low peaks during the study period. These results were validated by Terra and Aqua/Moderate Resolution Imaging Spectroradiometer (MODIS) and Project for On-Board Autonomy/Vegetation (PROBA) NDVI product, showing the root mean square error (RMSE) and bias of 0.09 and + 0.04 (MODIS) and 0.09 and - 0.04 (PROBA), respectively. These results also satisfied the FP7 Geoland2/BioPar project-defined user requirements (threshold: 0.15; target: 0.10).