Publications

Dandridge, C; Fang, B; Lakshmi, V (2020). Downscaling of SMAP Soil Moisture in the Lower Mekong River Basin. WATER, 12(1), 56.

Abstract
In large river basins where in situ data were limited or absent, satellite-based soil moisture estimates can be used to supplement ground measurements for land and water resource management solutions. Consistent soil moisture estimation can aid in monitoring droughts, forecasting floods, monitoring crop productivity, and assisting weather forecasting. Satellite-based soil moisture estimates are readily available at the global scale but are provided at spatial scales that are relatively coarse for many hydrological modeling and decision-making purposes. Soil moisture data are obtained from NASA's soil moisture active passive (SMAP) mission radiometer as an interpolated product at 9 km gridded resolution. This study implements a soil moisture downscaling algorithm that was developed based on the relationship between daily temperature change and average soil moisture under varying vegetation conditions. It applies a look-up table using global land data assimilation system (GLDAS) soil moisture and surface temperature data, and advanced very high resolution radiometer (AVHRR) and moderate resolution imaging spectroradiometer (MODIS) normalized difference vegetation index (NDVI) and land surface temperature (LST). MODIS LST and NDVI are used to obtain downscaled soil moisture estimates. These estimates are then used to enhance the spatial resolution of soil moisture estimates from SMAP 9 km to 1 km. Soil moisture estimates at 1 km resolution are able to provide detailed information on the spatial distribution and pattern over the regions being analyzed. Higher resolution soil moisture data are needed for practical applications and modelling in large watersheds with limited in situ data, like in the Lower Mekong River Basin (LMB) in Southeast Asia. The 1 km soil moisture estimates can be applied directly to improve flood prediction and assessment as well as drought monitoring and agricultural productivity predictions for large river basins.

DOI:
10.3390/w12010056

ISSN: