Tonooka, H; Sakai, M; Kumeta, A; Nakau, K (2020). In-Flight Radiometric Calibration of Compact Infrared Camera (CIRC) Instruments Onboard ALOS-2 Satellite and International Space Station. REMOTE SENSING, 12(1), 58.

The Compact Infrared Camera (CIRC) instruments onboard the Advanced Land Observing Satellite-2 (ALOS-2) and the Calorimetric Electron Telescope (CALET) attached to the International Space Station are satellite-borne 2D-array thermal infrared cameras for technical demonstrations in fields such as forest fire monitoring, volcano monitoring, and heat island analysis. Since they have the characteristics of low cost and low power consumption and have no onboard calibrator such as a blackbody or shutter, in-flight calibration should be performed by vicarious calibration (VC) and cross-calibration (CC). In this study, we determined the recalibration coefficients for both of the CIRC instruments as a function of time based on VC experiments in Lake Kasumigaura (Japan) and Railroad Valley Playa (USA), VC with telemetry data from three lakes in Japan and the USA, and CC with imagers onboard two geostationary satellites (MTSAT-2 and Himawari-8). As a result, the derived recalibration coefficients improved the accuracy of the ground-testing-based radiance remarkably in both of the CIRC instruments, suggesting that the recalibrated radiance can satisfy the target accuracy of CIRC, given as 2 K at 300 K. These coefficients, as a function of time, will be applied to all CIRC images by reprocessing planned in the near future.