Zarei, A; Shah-Hosseini, R; Ranjbar, S; Hasanlou, M (2021). Validation of non-linear split window algorithm for land surface temperature estimation using Sentinel-3 satellite imagery: Case study; Tehran Province, Iran. ADVANCES IN SPACE RESEARCH, 67(12), 3979-3993.
Abstract
In recent years, land surface temperature (LST) has become critical in environmental studies and earth science. Remote sensing technology enables spatiotemporal monitoring of this parameter on large scales. This parameter can be estimated by satellite images with at least one thermal band. Sentinel-3 SLSTR data provide LST products with a spatial resolution of 1 km. In this research, direct and indirect validation procedures were employed to evaluate the Sentinel-3 SLSTR LST products over the study area in different seasons from 2018 to 2019. The validation method was based on the absolute (direct) evaluation of this product with field data and comparison (indirect) evaluation with the MODIS LST product and the estimated LST using the non-linear split-window (NSW) algorithm. Also, two emissivity estimation methods, (1) NDVI thresholding method (NDVI-THM) and (2) classification-based emissivity method (CBEM), were used to estimate the LST using the NSW method according to the two thermal bands of Sentinel-3 images. Then, the accuracy of these methods in estimating LST was evaluated using field data and temporal changes of vegetation, which the NDVI-THM method generated better results. For indirect evaluation between the Sentinel-3 LST product, MODIS LST product, and LST estimated using NSW, four filters based on spatial and temporal separates between pairs of pixels and pixel quality were used to ensure the accuracy and consistency of the compared pairs of a pixel. In general, the accuracy results of the LST products of MODIS and Sentinel-3, and LST estimated using NSW showed a similar trend for LST changes during the seasons. With respect to the two absolute and comparative validations for the Sentinel-3 LST products, summer with the highest values of bias (-1.24 K), standard deviation (StDv = 2.66 K), and RMSE (2.43 K), and winter with the lowest ones (bias of 0.14 K, StDv of 1.13 K, and RMSE of 1.12 K) provided the worst and best results for the seasons in the period of 2018-2019, respectively. According to both absolute and comparative evaluation results, the Sentinel-3 SLSTR LST products provided reliable results for all seasons on a large temporal and spatial scale over our studied area. (C) 2021 COSPAR. Published by Elsevier B.V. All rights reserved.
DOI:
10.1016/j.asr.2021.02.019
ISSN:
0273-1177