Lv, AF; Zhang, ZL; Zhu, HC (2021). A Neural-Network Based Spatial Resolution Downscaling Method for Soil Moisture: Case Study of Qinghai Province. REMOTE SENSING, 13(8), 1583.
Abstract
Currently, soil-moisture data extracted from microwave data suffer from poor spatial resolution. To overcome this problem, this study proposes a method to downscale the soil moisture spatial resolution. The proposed method establishes a statistical relationship between low-spatial-resolution input data and soil-moisture data from a land-surface model based on a neural network (NN). This statistical relationship is then applied to high-spatial-resolution input data to obtain high-spatial-resolution soil-moisture data. The input data include passive microwave data (SMAP, AMSR2), active microwave data (ASCAT), MODIS data, and terrain data. The target soil moisture data were collected from CLDAS dataset. The results show that the addition of data such as the land-surface temperature (LST), the normalized difference vegetation index (NDVI), the normalized shortwave-infrared difference bare soil moisture indices (NSDSI), the digital elevation model (DEM), and calculated slope data (SLOPE) to active and passive microwave data improves the retrieval accuracy of the model. Taking the CLDAS soil moisture data as a benchmark, the spatial correlation increases from 0.597 to 0.669, the temporal correlation increases from 0.401 to 0.475, the root mean square error decreases from 0.051 to 0.046, and the mean absolute error decreases from 0.041 to 0.036. Triple collocation was applied in the form of [NN, FY3C, GEOS-5] based on the extracted retrieved soil-moisture data to obtain the error variance and correlation coefficient between each product and the actual soil-moisture data. Therefore, we conclude that NN data, which have the lowest error variance (0.00003) and the highest correlation coefficient (0.811), are the most applicable to Qinghai Province. The high-spatial-resolution data obtained from the NN, CLDAS data, SMAP data, and AMSR2 data were correlated with the ground-station data respectively, and the result of better NN data quality was obtained. This analysis demonstrates that the NN-based method is a promising approach for obtaining high-spatial-resolution soil-moisture data.
DOI:
10.3390/rs13081583
ISSN: