Publications

Li, JL; Ge, XY; He, Q; Abbas, A (2021). Aerosol optical depth (AOD): spatial and temporal variations and association with meteorological covariates in Taklimakan desert, China. PEERJ, 9, e10542.

Abstract
Aerosol optical depth (AOD) is a key parameter that reflects aerosol characteristics. However, research on the AOD of dust aerosols and various environmental variables is scarce. Therefore, we conducted in-depth studies on the distributions and variations of AOD in the Taklimakan Desert and its margins, China. We examined the correlation characteristics between AOD and meteorological factors combined with satellite remote sensing detection methods using MCD19A2-MODIS AOD products (from 2000, 2005, 2010, and 2015), MOD13Q1-MODIS normalized difference vegetation index products, and meteorological data. We analyzed the temporal and spatial distributions of AOD, periodic change trends, and important impacts of meteorological factors on AOD in the Taklimakan Desert and its margins. To explore the relationships between desert aerosols and meteorological factors, a random forest model was used along with environmental variables to predict AOD and rank factor contributions. Results indicated that the monthly average AOD exhibited a clear unimodal curve that reached its maximum in April. The AOD values followed the order spring (0.28) > summer (0.27) > autumn (0.18) > winter (0.17). This seasonality is clear and can be related to the frequent sandstorms occurring in spring and early summer. Interannual AOD showed a gradually increasing trend to 2010 then large changes to 2015. AOD tends to increase from south to north. Based on the general trend, the maximum value of AOD is more dispersed and its low-value area is always stable. The climatic index that has the most significant effect on AOD is relative humidity.

DOI:
10.7717/peerj.10542

ISSN:
2167-8359