Publications

Li, Y; Ren, YZ; Gao, WL; Tao, S; Jia, JD; Liu, XL (2021). ANALYSIS OF INFLUENCING FACTORS ON WINTER WHEAT YIELD ESTIMATIONS BASED ON A MULTISOURCE REMOTE SENSING DATA FUSION. APPLIED ENGINEERING IN AGRICULTURE, 37(5), 991-1003.

Abstract
The accurate estimation of crop yields is very important for crop management and food security. Although many methods have been developed based on single remote sensing data sources, advances are still needed to exploit multisource remote sensing data with higher spatial and temporal resolution. More suitable time window selection methods and vegetation indexes, both of which are critical for yield estimations, have not been fully considered. In this article, the Chinese GaoFen-1 Wide Field View (GF-1 WFV) and Terra Moderate Resolution Imaging Spectroradiometer (MODIS) data were fused by the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM) to generate time-series data with a high spatial resolution. Then, two time window selection methods involving distinguishing or not distinguishing the growth stages during the monitoring period, and three vegetation indexes, the normalized difference vegetation index (NDVI), two-band enhanced vegetation index (EVI2) and wide dynamic range vegetation index (WDRVI), were intercompared. Furthermore, the yield estimations obtained from two different spatial resolutions of fused data and MODIS data were analyzed. The results indicate that taking the growth stage as the time window unit division basis can allow a better estimation of winter wheat yield; and that WDRVI is more suitable for yield estimations than NDVI or EVI2. This study demonstrates that the spatial resolution has a great influence on yield estimations; further, this study identifies a better time window selection method and vegetation index for improving the accuracy of yield estimations based on a multisource remote sensing data fusion.

DOI:
10.13031/aea.14398

ISSN:
0883-8542