Publications

Zhang, ZY; Ju, WM; Zhou, YL (2021). The effect of water stress on net primary productivity in northwest China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 28(46), 65885-65898.

Abstract
Net primary productivity (NPP) has been widely used as the indicator of vegetation function and exhibits large spatial and temporal variations caused by numerous factors. Northwest China (NWC) is one of the driest regions in China, and water supply is the key determinant of NPP here. However, studies on the effects of water stress on NPP in NWC at the regional scale are still relatively lacking. Thus, in this study, based on a set of Moderate-Resolution Imaging Spectroradiometer (MODIS) NPP and evapotranspiration (ET) datasets, we quantified the response of NPP to water stress, which is indicated by crop water stress index (CWSI). Regional average of annual NPP in NWC showed an increasing trend during the study period, at a rate of 0.84 g C m(-2) yr(-1). At the province level, the NPP increase rates increased in the order of Ningxia (7.7%), Shaanxi (6.5%), Gansu (4.5%), Qinghai (3.8%), and Xinjiang (1.7%). NPP was negatively correlated with CWSI (p<0.05) in 73% of areas, indicating the key role of water stress in constraining NPP over this arid region. The effect of water stress on NPP changes with elevation. Water stress has the strongest negative impact on NPP in areas with elevations around 2000 m. In elevations above 5000 m, NPP is not limited by water stress, mostly positively correlated with CWSI. Our findings further clarify the importance of water stress in dryland ecosystems, while highlighting that elevation gradients can significantly affect the correlation between NPP and water stress.

DOI:
10.1007/s11356-021-15314-2

ISSN:
0944-1344