Publications

Yang, XC; Zhao, CF; Yang, YK; Fan, H (2021). Long-term multi-source data analysis about the characteristics of aerosol optical properties and types over Australia. ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(5), 3803-3825.

Abstract
The spatiotemporal distributions of aerosol optical properties and major aerosol types, along with the vertical distribution of major aerosol types over Australia, are investigated based on multi-year Aerosol Robotic Network (AERONET) observations at nine sites, the Moderate Resolution Imaging Spectroradiometer (MODIS), Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2), Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), and back-trajectory analysis from the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT). During the observation period from 2001-2020, the annual aerosol optical depth (AOD) at most sites showed increasing trends (0.002-0.029 yr(-1)), except for that at three sites, Canberra, Jabiru, and Lake Argyle, which showed decreasing trends (0.004 to 0.014 yr(-1)). In contrast, the annual Angstrom exponent (AE) showed decreasing tendencies at most sites (0.045 to 0.005 yr(-1)). The results showed strong seasonal variations in AOD, with high values in the austral spring and summer and relatively low values in the austral fall and winter, and weak seasonal variations in AE, with the highest mean values in the austral spring at most sites. Monthly average AOD increases from August to December or the following January and decreases during March-July. Spatially, the MODIS AOD showed obvious spatial heterogeneity, with high values appearing over the Australian tropical savanna regions, Lake Eyre Basin, and southeastern regions of Australia, while low values appeared over the arid regions in western Australia. MERRA-2 showed that carbonaceous aerosol over northern Australia, dust over central Australia, sulfate over densely populated northwestern and southeastern Australia, and sea salt over Australian coastal regions are the major types of atmospheric aerosols. The nine ground-based AERONET sites over Australia showed that the mixed type of aerosols (biomass burning and dust) is dominant in all seasons. Moreover, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) showed that polluted dust is the dominant aerosol type detected at heights 0.5-5 km over the Australian continent during all seasons. The results suggested that Australian aerosol has similar source characteristics due to the regional transport over Australia, especially for biomass burning and dust aerosols. However, the dust-prone characteristic of aerosol is more prominent over central Australia, while the biomass-burning-prone characteristic of aerosol is more prominent in northern Australia.

DOI:
10.5194/acp-21-3803-2021

ISSN:
1680-7316