Publications

Jiang, CY; Guan, KY; Wu, GH; Peng, B; Wang, S (2021). A daily, 250m and real-time gross primary productivity product (2000-present) covering the contiguous United States. EARTH SYSTEM SCIENCE DATA, 13(2), 281-298.

Abstract
Gross primary productivity (GPP) quantifies the amount of carbon dioxide (CO2) fixed by plants through photosynthesis. Although as a key quantity of terrestrial ecosystems, there is a lack of high-spatialand-temporal-resolution, real-time and observation-based GPP products. To address this critical gap, here we leverage a state-of-the-art vegetation index, near-infrared reflectance of vegetation (NIRV), along with accurate photosynthetically active radiation (PAR), to produce a SatelLite Only Photosynthesis Estimation (SLOPE) GPP product for the contiguous United States (CONUS). Compared to existing GPP products, the proposed SLOPE product is advanced in its spatial resolution (250m versus >500 m), temporal resolution (daily versus 8 d), instantaneity (latency of 1 d versus >2 weeks) and quantitative uncertainty (on a per-pixel and daily basis versus no uncertainty information available). These characteristics are achieved because of several technical innovations employed in this study: (1) SLOPE couples machine learning models with MODIS atmosphere and land products to accurately estimate PAR. (2) SLOPE couples highly efficient and pragmatic gap-filling and filtering algorithms with surface reflectance acquired by both Terra and Aqua MODIS satellites to derive a soil-adjusted NIRV (SANIRV) dataset. (3) SLOPE couples a temporal pattern recognition approach with a long-term Cropland Data Layer (CDL) product to predict dynamic C4 crop fraction. Through developing a parsimonious model with only two slope parameters, the proposed SLOPE product explains 85% of the spatial and temporal variations in GPP acquired from 49 AmeriFlux eddy-covariance sites (324 site years), with a root-mean-square error (RMSE) of 1.63 gCm(-2) d(-1). The median R-2 over C3 and C4 crop sites reaches 0.87 and 0.94, respectively, indicating great potentials for monitoring crops, in particular bioenergy crops, at the field level. With such a satisfactory performance and its distinct characteristics in spatiotemporal resolution and instantaneity, the proposed SLOPE GPP product is promising for biological and environmental research, carbon cycle research, and a broad range of real-time applications at the regional scale. The archived dataset is available at https://doi.org/10.3334/ORNLDAAC/1786 (download page: https://daac.ornl.gov/daacdata/cms/SLOPE_GPP_CONUS/data/, last access: 20 January 2021) (Jiang and Guan, 2020), and the real-time dataset is available upon request.

DOI:
10.5194/essd-13-281-2021

ISSN:
1866-3508