Publications

Karamouz, M; Ebrahimi, E; Ghomlaghi, A (2021). Soil moisture data using citizen science technology cross-validated by satellite data. JOURNAL OF HYDROINFORMATICS, 23(6), 1224-1246.

Abstract
Soil moisture represents many attributes of the geo-hydrological cycle and the climate system. Citizen science through social media as an emerging tool could be utilized to collect soil moisture data. A pilot study area was selected in Shahriar, Iran. A user interface and a sampling process (use of citizen science by subscribers) were designed to analyze the subjective and gravimetric soil moisture data. Furthermore, explanatory moisture condition (EMC), a new initiative to consider land use in soil moisture information from vegetation cover, was evaluated. A statistical artificial neural network was used for quantifying subjective data, and soil moisture layouts were produced by utilizing the ordinary kriging (OK) method. For cross-validating, the land surface temperature data from the MODIS satellite were retrieved. A platform for the region with 200 m grids resolution to collect daily soil moisture at eight ungauged stations is proposed to utilize subjective data from the subscribers and cross-validated with satellite data. A virtual station at the centroid of the pervious part of the study area was selected as a reference station for data collection daily or weekly to generate soil moisture time series. The results showed a high potential of utilizing satellite and citizen science data for real-time estimation of scarce soil moisture data in developing regions.

DOI:
10.2166/hydro.2021.029

ISSN:
1464-7141