Publications

Liu, Y; Yue, QM; Wang, QY; Yu, JS; Zheng, YX; Yao, XL; Xu, SG (2021). A Framework for Actual Evapotranspiration Assessment and Projection Based on Meteorological, Vegetation and Hydrological Remote Sensing Products. REMOTE SENSING, 13(18), 3643.

Abstract
As the most direct indicator of drought, the dynamic assessment and prediction of actual evapotranspiration (AET) is crucial to regional water resources management. This research aims to develop a framework for the regional AET evaluation and prediction based on multiple machine learning methods and multi-source remote sensing data, which combines Boruta algorithm, Random Forest (RF), and Support Vector Regression (SVR) models, employing datasets from CRU, GLDAS, MODIS, GRACE (-FO), and CMIP6, covering meteorological, vegetation, and hydrological variables. To verify the framework, it is applied to grids of South America (SA) as a case. The results meticulously demonstrate the tendency of AET and identify the decisive role of T, P, and NDVI on AET in SA. Regarding the projection, RF has better performance in different input strategies in SA. According to the accuracy of RF and SVR on the pixel scale, the AET prediction dataset is generated by integrating the optimal results of the two models. By using multiple parameter inputs and two models to jointly obtain the optimal output, the results become more reasonable and accurate. The framework can systematically and comprehensively evaluate and forecast AET; although prediction products generated in SA cannot calibrate relevant parameters, it provides a quite valuable reference for regional drought warning and water allocating.

DOI:
10.3390/rs13183643

ISSN: