Publications

Chi, Q; Zhou, SH; Wang, LJ; Zhu, MY; Liu, DD; Tang, WC; Zhao, X; Xu, SQ; Ye, SY; Lee, JY; Cui, YP (2021). Quantifying the Contribution of LUCC to Surface Energy Budget: A Case Study of Four Typical Cities in the Yellow River Basin in China. ATMOSPHERE, 12(11), 1374.

Abstract
With social changes and economic development, human activities inevitably lead to significant changes in land use types. Land use and land cover change (LUCC) leads to a series of changes in energy balance and surface temperature, which has an impact on the regional climate. In this study, MODIS remote sensing data were used to quantify the results of the biological and geophysical effects caused by LUCC in four typical cities in the Yellow River Basin of China: Jinan, Zhengzhou, Lanzhou and Xining. The results showed the following: (1) The latent heat flux and the net radiation of the four cities were both increasing on the whole. The latent heat flux of water and forest was higher, which played a key role in energy consumption on the ground. The net radiation value of the old urban and urban expansion areas was higher, while that of the forest was lower, which indicated that human activities increased the input of surface energy. (2) The differences between latent heat flux and net radiation in areas greatly affected by human activities were much smaller than those in natural areas such as forest and grassland. This indicted that human activities increased the warming trend. In addition, most of the differences between latent heat flux and net radiation in the four cities showed a downward trend. (3) Different cities have different regulating factors for land surface temperature (LST). In Jinan and Zhengzhou, the regulation of LST by net radiation was more obvious, while in Lanzhou and Xining, the regulation of LST by latent heat flux was more pronounced. By comparing LUCC and the forced balance between energy intake and consumption in four typical cities along the Yellow River Basin, this study emphasizes the difference of energy budgets under different land use types, which has important reference value for judging the spatial difference of urban thermal environments.

DOI:
10.3390/atmos12111374

ISSN: