Publications

Liu, YQ; Lin, T; Hong, J; Wang, YH; Shi, LM; Huang, YY; Wu, X; Zhou, H; Zhang, JH; de Leeuw, G (2021). Multi-dimensional satellite observations of aerosol properties and aerosol types over three major urban clusters in eastern China. ATMOSPHERIC CHEMISTRY AND PHYSICS, 21(16), 12331-12358.

Abstract
Using 14 years (2007-2020) of data from passive (MODIS/Aqua) and active (CALIOP/CALIPSO) satellite measurements over China, we investigate (1) the temporal and spatial variation of aerosol properties over the Beijing-Tianjin-Hebei (BTH) region, the Yangtze River Delta (YRD), and the Pearl River Delta (PRD) and (2) the vertical distribution of aerosol types and extinction coefficients for different aerosol optical depth (AOD) and meteorological conditions. The results show the different spatial patterns and seasonal variations of the AOD over the three regions. Annual time series reveal the occurrence of AOD maxima in 2011 over the YRD and in 2012 over the BTH and PRD; thereafter the AOD decreases steadily. Using the CALIOP vertical feature mask, the relative frequency of occurrence (rFO) of each aerosol type in the atmospheric column is analyzed: rFOs of dust and polluted dust decrease from north to south; rFOs of clean ocean, polluted continental, clean continental and elevated smoke aerosol increase from north to south. In the vertical, the peak frequency of occurrence (FO) for each aerosol type depends on region and season and varies with AOD and meteorological conditions. In general, three distinct altitude ranges are observed with the peak FO at the surface (clean continental and clean marine aerosol), at similar to 1 km (polluted dust and polluted continental aerosol) and at similar to 3 km (elevated smoke aerosol), whereas dust aerosol may occur over the whole altitude range considered in this study (from the surface up to 8 km). The designation of the aerosol type in different height ranges may to some extent reflect the CALIOP aerosol type classification approach. Air mass trajectories indicate the different source regions for the three study areas and for the three different altitude ranges over each area. In this study nighttime CALIOP profiles are used. The comparison with daytime profiles shows substantial differences in the FO profiles with altitude, which suggest effects of boundary layer dynamics and aerosol transport on the vertical distribution of aerosol types, although differences due to day-night CALIOP performance cannot be ruled out.

DOI:
10.5194/acp-21-12331-2021

ISSN:
1680-7316