Publications

Anderson, MC; Yang, Y; Xue, J; Knipper, KR; Yang, Y; Gao, F; Hain, CR; Kustas, WP; Cawse-Nicholson, K; Hulley, G; Fisher, JB; Alfieri, JG; Meyers, TP; Prueger, J; Baldocchi, DD; Rey-Sanchez, C (2021). Interoperability of ECOSTRESS and Landsat for mapping evapotranspiration time series at sub-field scales. REMOTE SENSING OF ENVIRONMENT, 252, 112189.

Abstract
Land-surface temperature retrieved from thermal infrared (TIR) remote sensing has proven to be a valuable constraint in surface energy balance models for estimating evapotranspiration (ET). For optimal utility in agricultural water management applications, frequent thermal imaging (<4-day revisit) at sub-field (100 m or less) spatial resolution is desired. While, the current suite of Landsat satellites (7 and 8) provides the required spatial resolution, the 8-day combined revisit can be inadequate to capture rapid changes in surface moisture status or crop phenology, particularly in areas of persistent cloud cover. The new ECOsystem Spaceborne Thermal Radiometer Experiment on Space Station (ECOSTRESS) mission, with an average 4-day revisit interval and nominal 70-m resolution, provides a valuable research platform for augmenting Landsat TIR sampling and for investigating TIR-based ET mapping mission requirements more broadly. This study investigates the interoperability of Landsat and ECOSTRESS imaging for developing ET image timeseries with high spatial (30-m) and temporal (daily) resolution. A data fusion algorithm is used to fuse Landsat and ECOSTRESS ET retrievals at 30 m with daily 500-m retrievals using TIR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) over target agricultural sites spanning the United States.The added value of the combined multi-source dataset is quantified in comparison with daily flux tower observations collected within these target domains. In addition, we investigate ET model performance as a function of ECOSTRESS view angle, overpass time, and time separation between TIR and Landsat visible to shortwave infrared (VSWIR) data acquisitions used to generate land surface temperature, leaf area index, and albedo inputs to the surface energy balance model. The results demonstrate the value of the higher temporal sampling provided by ECOSTRESS, especially in areas that are frequently impacted by cloud cover. Limiting usage to ECOSTRESS scenes collected between 9:00 a.m. to 5:00 p. m. and nadir viewing angles <20 degrees yielded daily (24-h) ET retrievals of comparable quality to the well-tested Landsat baseline. We also discuss challenges in using land-surface temperature from a thermal free-flyer system for ET retrieval, which may have ramifications for future TIR water-use mapping missions.

DOI:
10.1016/j.rse.2020.112189

ISSN:
0034-4257