Publications

Ni, JY; Feng, JJ; Sun, RX; Zhang, YZ (2022). Assessing Sea Surface Temperatures Estimated from Fused Infrared and Microwave Data. WATER, 14(21), 3357.

Abstract
Sea surface temperature (SST), a critical parameter of the global ocean-atmosphere system, is an essential element in the study and in the application of marine science. Satellite-infrared observations currently represent the only available method for continuous, large-scale observation of SST. Although passive microwave observations are not blocked by clouds, allowing for data collection in all weather conditions, this technological tool is characterized by low spatial resolution. Conversely, infrared observations offer high resolution but are susceptible to cloud obscuration. Accordingly, a technique that effectively fuses microwave and infrared satellite observations into a high-resolution SST field with global coverage close to the actual distribution is of practical significance. This paper describes fusing MODIS infrared remote sensing and AMSR-2 microwave remote sensing SST data with an optimal interpolation (OI) approach to produce a high-resolution SST data. The study chose the coastal Kuroshio region of China to establish an appropriate scale for examining the spatial structure of SST and attaining a more realistic picture of SST observations and impacts. The included discussion of the sources of error in the fusion process provides a reference for improving the accuracy of fused marine remote sensing data. The study also compared the fused SST results and the current international mainstream multi-temporal resolution of the three using the OI algorithm. We compared the fusion product with ARGO data with and without typhoon impact to explore and practice the OI in SST fusion when evaluating the accuracy of different data in the case of external disturbance being present. The research results have great significance for improving regional SST forecast accuracy while ensuring the applicability of various approaches to fusing SST data by incorporating the influence of typhoons in the offshore region of the East China Sea (ECS). Implications for the future development of SST fusion data are also included in the discussion.

DOI:
10.3390/w14213357

ISSN:
2073-4441