Publications

Pan, FB; Jiang, LM; Zheng, ZJ; Wang, GX; Cui, HZ; Zhou, XN; Huang, JY (2022). Retrieval of Fractional Snow Cover over High Mountain Asia Using 1 km and 5 km AVHRR/2 with Simulated Mid-Infrared Reflective Band. REMOTE SENSING, 14(14), 3303.

Abstract
Accurate long-term snow-covered-area mapping is essential for climate change studies and water resource management. The NOAA AVHRR/2 provides a unique data source for long-term, large-spatial-scale monitoring of snow-covered areas at a daily scale. However, the value of AVHRR/2 in mapping snow-covered areas is limited, due to its lack of a shortwave infrared band for snow/cloud discrimination. We simulated the reflectance in the 3.75 mu m mid-infrared band with a radiative transfer model and then developed three fractional-snow-cover retrieval algorithms for AVHRR/2 imagery at 1 km and 5 km resolutions. These algorithms are based on the multiple endmember spectral mixture analysis algorithm (MESMA), snow index (SI) algorithm, and non-snow/snow two endmember model (TEM) algorithm. Evaluation and comparison of these algorithms were performed using 313 scenarios that referenced snow-cover maps from Landsat-5/TM imagery at 30 m resolution. For all the evaluation data, the MESMA algorithm outperformed the other two algorithms, with an overall accuracy of 0.84 (0.85) and an RMSE of 0.23 (0.21) at the 1 km (5 km) scale. Regarding the effect of land cover type, we found that the three AVHRR/2 fractional-snow-cover retrieval algorithms have good accuracy in bare land, grassland, and Himalayan areas; however, the accuracy decreases in forest areas due to the shading of snow by the canopy. Regarding the topographic effect, the accuracy evaluation indices showed a decreasing and then increasing trend as the elevation increased. The accuracy was worst in the 4000-5000 m range, which was due to the severe snow fragmentation in the High Mountain Asia region; the early AVHRR/2 sensors could not effectively monitor the snow cover in this region. In this study, by increasing the number of bands of AVHRR/2 1 km data for fractional-snow-cover retrieval, a good foundation for subsequent long time series kilometre- resolution snow-cover monitoring has been laid.

DOI:
10.3390/rs14143303

ISSN:
2072-4292