Publications

Gavrouzou, M; Hatzianastassiou, N; Lolis, CJ; Korras-Carraca, MB; Mihalopoulos, N (2022). Modification of Temperature Lapse Rates and Cloud Properties during a Spatiotemporally Extended Dust Aerosol Episode (16-18 June 2016) over the Mediterranean Basin Based on Satellite and Reanalysis Data. REMOTE SENSING, 14(3), 679.

Abstract
A spatiotemporally extended dust aerosol episode that occurred over the Mediterranean Basin (MB) from 16 to 18 June 2016 is investigated using observational satellite and reanalysis data, focusing on the effects of high dust loads on cloud formation and temperature fields, including the creation of temperature inversions. The atmospheric conditions before and during the 3-day dust aerosol episode case (DAEC) are also analyzed. The dust episode, which is identified using a contemporary satellite algorithm, consists of long-range transport of African dust to the western and central MB. The day to day, before and during the DAEC, atmospheric circulation, dust-cloud interactions, and dust effect on temperature are examined using a variety of Moderate Resolution Imaging Spectroradiometer (MODIS) Level-3 Collection 6.1 satellite and Modern-Era Retrospective analysis for Research and Applications, Version 2 (MERRA-2) reanalysis data. According to the obtained results, the dust export from N. Africa, which occurs under the prevalence of a trough over the western MB, and a ridge over the central MB, extends from southwest to northeast along two axes, one in the western and another in the central Mediterranean, covering remote areas up to the coasts of southern Europe, including the Balearic and Tyrrhenian Seas, the Italian peninsula, the Ionian and Adriatic Seas, and the Balkan peninsula. The analysis provides evidence of the formation of mixed-phase clouds, with high cloud-top heights (CTH higher than 10 km) and low cloud-top temperatures (CTT as low as 230 K), which spatiotemporally coincide with the high dust loadings that provide the necessary CCN and IN. Dust aerosols are transported either in the boundary layer (within the first 1-2 km) of areas close to the North African dust source areas or in the free troposphere over the Mediterranean Sea and the Italian and Balkan peninsulas (between 2 and 8 km). Distinct and extended layers of remarkable temperature inversions (up to 20 K/km) are created below the exported dust layers in the boundary layer of Mediterranean Sea areas, while weak/reduced lapse rates are formed over continental areas of MB undergoing the dust transport. Such modifications of temperature fields are important for the dynamics of the atmosphere of MB.

DOI:
10.3390/rs14030679

ISSN:
2072-4292