Publications

Wang, FX; Liu, YB; Zhou, YB; Sun, RF; Duan, J; Li, Y; Ding, QJ; Wang, HL (2023). Retrieving Vertical Cloud Radar Reflectivity from MODIS Cloud Products with CGAN: An Evaluation for Different Cloud Types and Latitudes. REMOTE SENSING, 15(3), 816.

Abstract
Retrieving cloud vertical structures with satellite remote-sensing measurements is highly desirable and technically challenging. In this paper, the conditional adversarial neural network (CGAN) for retrieving the equivalent cloud radar reflectivity at 94 GHz of the Cloud Profile Radar (CPR) onboard CloudSat is extended and evaluated comprehensively for different cloud types and geographical regions. The CGAN-based retrieval model was extended with additional data samples and improved with a new normalization adjustment. The model was trained with the labeled datasets of the moderate-resolution imaging spectroradiometer (MODIS) cloud top pressure, cloud water path, cloud optical thickness, and effective particle radius data, and the CloudSat/CPR reflectivity from 2010 to 2017 over the global oceans. The test dataset, containing 24,427 cloud samples, was statistically analyzed to assess the performance of the model for eight cloud types and three latitude zones with multiple verification metrics. The results show that the CGAN model possesses good reliability for retrieving clouds with reflectivity > -25 dBZ. The model performed the best for deep convective systems, followed by nimbostratus, altostratus, and cumulus, but presented a very limited ability for stratus, cirrus, and altocumulus. The model performs better in the low and middle latitudes than in the high latitudes. This work demonstrated that the CGAN model can be used to retrieve vertical structures of deep convective clouds and nimbostratus with great confidence in the mid- and lower latitude region, laying the ground for retrieving reliable 3D cloud structures of the deep convective systems including convective storms and hurricanes from MODIS cloud products and used for predicting these storms.

DOI:
10.3390/rs15030816

ISSN:
2072-4292