Publications

Wang, YQ; Huang, H; State, R (2023). Early Crop Mapping Using Dynamic Ecoregion Clustering: A USA-Wide Study. REMOTE SENSING, 15(20), 4962.

Abstract
Mapping target crops earlier than the harvest period is an essential task for improving agricultural productivity and decision-making. This paper presents a new method for early crop mapping for the entire conterminous USA (CONUS) land area using the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) data with a dynamic ecoregion clustering approach. Ecoregions, geographically distinct areas with unique ecological patterns and processes, provide a valuable framework for large-scale crop mapping. We conducted our dynamic ecoregion clustering by analyzing soil, climate, elevation, and slope data. This analysis facilitated the division of the cropland area within the CONUS into distinct ecoregions. Unlike static ecoregion clustering, which generates a single ecoregion map that remains unchanged over time, our dynamic ecoregion approach produces a unique ecoregion map for each year. This dynamic approach enables us to consider the year-to-year climate variations that significantly impact crop growth, enhancing the accuracy of our crop mapping process. Subsequently, a Random Forest classifier was employed to train individual models for each ecoregion. These models were trained using the time-series MODIS (Moderate Resolution Imaging Spectroradiometer) 250-m NDVI and EVI data retrieved from Google Earth Engine, covering the crop growth periods spanning from 2013 to 2017, and evaluated from 2018 to 2022. Ground truth data were sourced from the US Department of Agriculture's (USDA) Cropland Data Layer (CDL) products. The evaluation results showed that the dynamic clustering method achieved higher accuracy than the static clustering method in early crop mapping in the entire CONUS. This study's findings can be helpful for improving crop management and decision-making for agricultural activities by providing early and accurate crop mapping.

DOI:
10.3390/rs15204962

ISSN:
2072-4292