Publications

Zhu, WB; Fan, L; Jia, SF (2023). Integration of microwave satellite soil moisture products in the contextual surface temperature-vegetation index models for spatially continuous evapotranspiration estimation. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 203, 211-229.

Abstract
The contextual surface temperature-vegetation index (TVX) models have been widely used for the retrieval of soil moisture (SM) and evapotranspiration (ET). One of the key premises for their application is to determine quantitatively the theoretical boundaries of this contextual TVX space. Usually these theoretical boundaries are determined based on land surface energy balance principle. Although sound in physical mechanism, the complex parameterization involved has hampered its remote sensing (RS) applications. Our recent studies show that ground-based SM observations can be used for a quick and continuous retrieval of these theoretical boundaries. The main disadvantage lies in its reliance on in-situ SM observations. Fortunately the development of microwave RS technology has made it possible to monitor SM at both regional and global scale. Under this background, a practical framework based on the contextual TVX models was proposed in this paper for continuous ET estimation through the combination of microwave-based SM products and MODIS (Moderate Resolution Imaging Spectroradiometer) products. Daily actual ET over the Southern Great Plains of the United States of America was calculated as the product of net radiation and evaporative fraction (EF). The focus of this framework was to investigate how optical and microwave RS can be combined to achieve a quick and continuous retrieval of EF independently of ground observations. Specifically, EF was retrieved from the contextual TVX models, the theoretical boundaries of which were calibrated at the annual scale based on an optimization scheme. Assuming the seasonal variation of the theoretical dry edge follows a cosine function of solar zenith, the essence of this optimization scheme is to search for the optimal amplitude parameter that maximizes the correlation between microwave-based SM observations and soil moisture index retrieved from the contextual TVX models. Two microwave-based SM products including SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) were adopted to demonstrate this optimization scheme. The correlation coefficient, root mean square error and bias of EF estimates calibrated by SMAP were 0.700, 0.146 and 0.047, and those achieved by SMOS were 0.663, 0.174 and 0.168, respectively. The optimization scheme has not only made it possible to conduct a continuous monitoring of ET based entirely on RS observations but also achieved the downscaling of microwave satellite SM products. Thus the combination of optical and microwave RS holds great potential for coupled and continuous estimation of SM and ET over large scale.

DOI:
10.1016/j.isprsjprs.2023.08.004

ISSN:
1872-8235