Publications

Khan, M; Tariq, S; Haq, ZU; Rashid, M (2024). Understanding the spatiotemporal distribution of aerosols and their association with natural and anthropogenic factors over Saudi Arabia using multi-sensor remote sensing data. AIR QUALITY ATMOSPHERE AND HEALTH.

Abstract
Air quality is becoming a serious public health issue, affecting millions of people globally. In support of this fact, the World Health Organization predicts that approximately 2.4 million people die per year as a result of the health impacts of air pollution. So, to recognize the impacts of air pollution, we must first investigate their physical properties. In this article, we used the Ultraviolet Aerosol Index (UVAI) and Multi-Angle Implementation of Atmospheric Correction (MAIAC) aerosol optical depth (AOD) from January 2005 to December 2021 obtained by the Ozone Monitoring Instrument (OMI) and MODIS respectively to investigate the Spatio-temporal patterns, annually and seasonal variations of absorbing aerosols, and interaction of aerosols with various meteorological parameters (rainfall, temperature, wind speed, e.g.) over Saudi Arabia (SA). Using the Hybrid Single Particle Langrangian Integrated Trajectory (HYSPLIT) model, we also identified pollution sources in SA's main cities. We also go through the natural and manmade factors that influence absorbing aerosols. Significant UVAI and MAIAC AOD values were observed high in the eastern and central regions of SA and low in the northern and western regions. Over SA, the average UVAI and MAIAC AOD are increasing at 0.93% and 0.83% per year respectively. UVAI has a favorable relationship with temperature in SA's eastern regions. In SA, UVAI has a positive and negative correlation with energy consumption and secondary industries of 0.787 and -0.52, respectively. Therefore, this study will help policymakers to identify the major hotspots and variability of aerosols in SA. Moreover, the contribution of different anthropogenic activities in polluting the atmosphere will also be analyzed in this study. Furthermore, depending on the findings of this study, various techniques such as plantation promotion, excellent fuel efficiency, a ban on the use of old and outdated vehicles, and so on can be employed to minimize the concentration of particle pollution.

DOI:
10.1007/s11869-024-01578-3

ISSN:
1873-9326