Publications

Silveira, EMO; Pidgeon, AM; Persche, M; Radeloff, VC (2024). Remotely-sensed phenoclusters of Wisconsin ' s forests, shrublands, and grasslands for biodiversity applications. FOREST ECOLOGY AND MANAGEMENT, 561, 121878.

Abstract
Heterogeneous vegetation supports higher species richness than homogenous vegetation, which is why efficiently identifying heterogenous vegetation can be useful for biodiversity conservation. Satellite remote-sensing data provide an opportunity to generate vegetation heterogeneity metrics and to explore the phenology of vegetation patterns. Phenoclusters are vegetation types with similar phenological characteristics, and valuable for capturing vegetation habitat heterogeneity patterns. Our goal was to map phenoclusters for Wisconsin, USA, at 10-m spatial resolution based on land surface phenology metrics from EVI (Enhanced Vegetation Index) Sentinel-2 data. We characterized each phenocluster based on landcover composition and structure, phenology timing, and environmental factors, and compared them to bird species richness. We also calculated the diversity of phenoclusters at multiple spatial extents. We identified 14 phenoclusters in Wisconsin, each with distinct landcover composition and structure, and unique phenological characteristics. Our remotely-sensed phenoclusters effectively captured environmental gradients, with elevation and temperature emerging as the most important driving variables. Furthermore, the phenoclusters successfully captured bird biodiversity patterns, especially richness of forest and grassland specialist. Our results identified phenological patterns among Wisconsin 's forests, shrublands, and grasslands, capturing phenological timing both among and within the same tree species. Phenoclusters are a valuable tool for capturing vegetation habitat heterogeneity, phenology diversity and biodiversity patterns, as well as climate change effects.

DOI:
10.1016/j.foreco.2024.121878

ISSN:
1872-7042