Publications

Qin, X; Shi, GM; Yang, FM (2024). Enhancement of the Vegetation Carbon Uptake by the Synergistic Approach to Air Pollution Control and Carbon Neutrality in China. ATMOSPHERE, 15(5), 578.

Abstract
Carbon sinks provided by land ecosystems play a crucial role in achieving carbon neutrality. However, the future potential of carbon sequestration remains highly uncertain. The impact of pollutant emission reduction (PER) introduced by the proposed synergistic approach to air pollution control and carbon neutrality on carbon sinks in China has not yet been fully evaluated. In this study, we analyzed the effects of regional carbon-neutral PER policies, global climate change, and their coupled effects on China's terrestrial gross primary productivity (GPP) by conducting numerical experiments using the weather research and forecasting model coupled with chemistry (WRF-Chem) and the moderate resolution imaging spectroradiometer photosynthesis algorithm (MODIS-PSN). We found that carbon-neutral PER policies could promote GPP growth in most regions of China in 2060, particularly during April and October, resulting in a total increase of at least 21.84 TgC compared to that in 2016, which offset the adverse effects of global climate change up to fourfold. The aerosol radiative effects drive GPP growth under carbon-neutral PER policies, primarily through an increase in daily minimum temperature during winter and an increase in shortwave radiation during other seasons. Our research highlights that reducing pollutant emissions enhances future potential for carbon sequestration, revealing positive feedback towards achieving the target of carbon neutrality.

DOI:
10.3390/atmos15050578

ISSN:
2073-4433