Bulgin, CE; Maidment, RI; Ghent, D; Merchant, CJ (2024). Stability of cloud detection methods for Land Surface Temperature (LST) Climate Data Records (CDRs). REMOTE SENSING OF ENVIRONMENT, 315, 114440.
Abstract
The stability of a climate data record (CDR) is essential for evaluating long-term trends in surface temperature using remote sensing products. In the case of a satellite-derived CDR of land surface temperature (LST), this includes the stability of processing steps prior to the estimation of the target climate variable. Instability in the masking of cloud-affected observations can result in non-geophysical trends in a LST CDR. This paper provides an assessment of cloud detection performance stability over a 25-year LST CDR generated using data from the second Along-Track Scanning Radiometer (ATSR-2), the Advanced Along-Track Scanning Radiometer (AATSR), the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Sea and Land Surface Temperature Radiometer (SLSTR). We evaluate three cloud detection methodologies, one fully Bayesian, one na & iuml;ve probabilistic and the operational threshold-based cloud mask provided with each sensor, at four in-situ ceilometer sites. Of the 12 algorithm-site combinations assessed, only two (17 %) were stable across the full timeseries with respect to both cloud contamination and missed clear-sky observations. Five (42 %) were stable with respect to missed clear-sky observations only. The associated impacts on LST trends in the CDR could be as large as (+/-) 0.73 K per decade (0.43 K per decade above the target stability), which means that attention needs to be paid to this aspect of stability in order to understand uncertainty in long-term observed trends. Given that cloud detection stability has not to our knowledge been previously assessed for any target climate variable, this conclusion may apply more broadly to other satellite-derived CDRs.
DOI:
10.1016/j.rse.2024.114440
ISSN:
0034-4257