Publications

Christian, KE; Palm, SP; Yorks, JE; Nowottnick, EP (2025). Evaluation of ICESat-2 ATL09 Atmospheric Products Using CALIOP and MODIS Space-Based Observations. REMOTE SENSING, 17(3), 482.

Abstract
Since its launch in 2018, the Ice, Cloud, and Land Elevation Satellite-2 (ICESat-2) mission has provided atmospheric products, including calibrated backscatter profiles and cloud and aerosol layer detection. While not the primary focus of the mission, these products garnered more interest after the end of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data collection in 2023. In comparing the cloud and aerosol detection frequencies from CALIOP and ICESat-2, we find general agreement in the global patterns. The global cloud detection frequencies were similar in June, July, and August of 2019 (64.7% for ICESat-2 and 59.8% for CALIOP), as were the location and altitude of the tropical maximum; however, low daytime signal-to-noise ratios (SNRs) reduced ICESat-2's detection frequencies compared to those of CALIOP. The ICESat-2 global aerosol detection frequencies were likewise lower. ICESat-2 generally retrieved a higher average global aerosol optical depth compared to the Moderate Resolution Imaging Spectroradiometer (MODIS) over the ocean, but the two were in closer agreement over regions with higher aerosol concentrations such as the Eastern Atlantic Ocean and the Northern Indian Ocean. The ICESat-2 and CALIOP orbital coincidences reveal highly correlated backscatter profiles as well as similar cloud and aerosol layer top altitudes. Future work with machine learning denoising techniques may allow for improved feature detection, especially during daytime.

DOI:
10.3390/rs17030482

ISSN:
2072-4292