Publications

Ma, EL; Feng, ZK; Chen, PP; Wang, L (2025). Spatiotemporal Dynamics of Forest Vegetation in Northern China and Their Responses to Climate Change. FORESTS, 16(4), 671.

Abstract
Forests play a crucial role in the global carbon cycle, climate regulation, and biodiversity conservation, making them essential for understanding ecosystem responses to environmental change. However, the spatiotemporal dynamics of forest vegetation and their responses to climate change have yet to be fully explored. This study assessed the spatiotemporal dynamics and adaptation of forest vegetation from Northern China by extracting changes in forest vegetation and phenological characteristics from 2001 to 2023 with the time-series MODIS Normalized Difference Vegetation Index (NDVI) data and analyzing the impact of climate variables on these changes. The linear regression analysis method and the four-parameter double logistic model were employed to assess forest vegetation changes and identify forest vegetation phenological phases, respectively. Partial correlation analysis was used to assess the relationship between forest vegetation and climate variables. The results of this study indicate that over the past two decades, the annual mean NDVI of forest vegetation has exhibited a slow increasing trend of approximately 0.002 yr(-1), with a spatial distribution pattern that gradually decreases from south to north, showing a significant correlation with latitude. The magnitude of annual mean NDVI changes varies considerably among different forest vegetation types. However, except for evergreen broadleaf forests, the NDVI of all other forest types has shown a significant increasing trend. Additionally, central North China and southeastern Tibet exhibit higher NDVI values in both spring (>0.55) and autumn (>0.65) than other areas, while the NDVI values in Northeast China and North China are higher in summer (>0.8) compared to other areas. The study reveals substantial spatial heterogeneity in the average phenological phases and NDVI values of forest vegetation across different regions, influenced by latitude, altitude, and regional climatic conditions. The spatial distribution patterns of NDVI during the green-up and senescence phases remain relatively consistent, yet significant regional differences exist within the same phenological phase. Partial correlation analysis indicates that forest vegetation in different regions responds distinctly to meteorological factors. These findings contribute to a deeper understanding of the spatiotemporal dynamics of vegetation change and its complex interactions with climate change, offering valuable insights for forest ecosystem management and climate adaptation of forest vegetation.

DOI:
10.3390/f16040671

ISSN:
1999-4907