Publications

Mahmoud, AR; Farahat, EA; Hassan, LM; Halmy, MWA (2025). Remotely sensed data contribution in predicting the distribution of native Mediterranean species. SCIENTIFIC REPORTS, 15(1), 12475.

Abstract
The global change threats significantly alters the ecological distribution of species across different ecosystems. Species distribution models (SDMs) are considered a widely used tool for assessing the global impact on biodiversity. Recently, remote sensing data have been used in a growing number of studies to predict species distribution and improve SDMs performance. This study evaluates the contribution of spectral indices in species distribution modeling using MaxEnt. We compared models based on spectral indices data (RS-only), environmental variables (EN-only), and their combination (CM) to predict the distribution of three key Mediterranean native species: Thymelaea hirsuta, Ononis vaginalis, and Limoniastrum monopetalum. The combined models (CM) demonstrated superior performance with excellent accuracy measures values compared to other models. Jackknife tests revealed both environmental factors (e.g., distance to coastline, mean temperature of wettest and driest quarters) and spectral indices (e.g., NDWI, LST) contributed substantially to predicting the studied species. The findings emphasize the importance of integrating diverse data sources to improve the accuracy of SDMs, particularly in heterogeneous landscapes like the Mediterranean region. This integrated approach provides a more comprehensive understanding of species spreading patterns and is critical for effective management and conservation strategies.

DOI:
10.1038/s41598-025-94569-y

ISSN: