Publications

Karinou, F; Agathangelidis, I; Cartalis, C (2025). Assessing the Combined Impact of Land Surface Temperature and Droughts to Heatwaves over Europe Between 2003 and 2023. REMOTE SENSING, 17(9), 1655.

Abstract
The increasing frequency, intensity, and duration of heatwaves and droughts pose significant societal and environmental challenges across Europe. This study analyzes land surface temperature (LST) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) between 2003 and 2023 to identify thermal anomalies associated with heatwaves. Additionally, this study examines the role of different land cover types in modulating heatwave impacts, employing turbulent flux observations from micrometeorological towers. The interaction between heatwaves and droughts is further explored using the Standardized Precipitation Evapotranspiration Index (SPEI) and soil moisture data, highlighting the amplifying role of water stress through land-atmosphere feedbacks. The results reveal a statistically significant upward trend in LST-derived thermal anomalies, with the 2022 heatwave identified as the most extreme event, when approximately 75% of Europe experienced strong positive anomalies. On average, 91% of heatwave episodes identified in reanalysis-based air temperature records coincided with LST-defined anomaly events, confirming LST as a robust proxy for heatwave detection. Flux tower observations show that, during heatwaves, evergreen coniferous and mixed forests predominantly enhance sensible heat fluxes (mean anomalies during midday of 74 W/m2 and 62 W/m2, respectively), while grasslands exhibit increased latent heat flux (89 W/m2). Notably, under extreme compound heat-drought conditions, this pattern reverses for grassed sites due to rapid soil moisture depletion. Overall, the findings underscore the combined influence of surface temperature and drought in driving extreme heat events and introduce a novel, multi-source approach that integrates satellite, reanalysis, and ground-based data to assess heatwave dynamics across scales.

DOI:
10.3390/rs17091655

ISSN:
2072-4292