Publications

Mustafa, ARA; Shokr, MS; Alharbi, T; Abdelsamie, EA; El-Sorogy, AS; de Larriva, JE (2025). Integration of Google Earth Engine and Aggregated Air Quality Index for Monitoring and Mapping the Spatio-Temporal Air Quality to Improve Environmental Sustainability in Arid Regions. SUSTAINABILITY, 17(8), 3450.

Abstract
Egypt must present a more thorough and accurate picture of the state of the air, as this can contribute to better environmental and public health results. Hence, the goal of the current study is to map and track the spatiotemporal air quality over Egypt's Qena Governorate using remote sensing data. The current investigation is considered a pioneering study and the first attempt to map the air quality index in the studied area. Multisource remote sensing data sets from the Google Earth Engine (GEE) were used to achieve this. The first is Sentinel-5P's average annual satellite image data, which were gathered for four important pollutants: carbon monoxide (CO), sulfur dioxide (SO2), nitrogen dioxide (NO2), and ozone (O3) over a six year period from 2019 to 2024. The second is the MODIS aerosol optical density (AOD) product satellite image data from the GEE platform, which calculate the average annual particulate matter (PM2.5 and PM10). All mentioned pollutant images were used to calculate the air quality index (AQI) and aggregated air quality index (AAQI). Lastly, we used Landsat's average yearly land surface temperature (LST) retrieval (OLI/TIRS). The aggregated air quality index (AAQI) was computed, and the U.S. Environmental Protection Agency's (USEPA) air quality index (AQI) was created for each pollutant. According to the data, the AQI for CO, PM2.5, and PM10 in the research region ranged from hazardous to unhealthy; at the same time, the AQI for NO2 varied between harmful and unhealthy for sensitive groups, with values ranging from 135 to 165. The annual average of the AQI for SO2 throughout the studied period ranged from 29 to 339, with the categories ranging from good to hazardous. The constant AQI for ozone in the study area indicates that the ozone doses in Qena are surprisingly stable. Lastly, with a minimum value of 265 and a maximum of 489, the AAQI ranged from very unhealthy to dangerous in the current study. According to the data, the area being studied has poor air quality, which impacts the environment and public health. The results of this study have significant implications for environmental sustainability and human health and could be used in other areas.

DOI:
10.3390/su17083450

ISSN:
2071-1050