Wang, ZF; Wang, JY; Wang, WL; Zhang, C; Mandakh, U; Ganbat, D; Myanganbuu, N (2025). An Explanation of the Differences in Grassland NDVI Change in the Eastern Route of the China-Mongolia-Russia Economic Corridor. REMOTE SENSING, 17(5), 867.
Abstract
This study analyzed the spatiotemporal changes in grassland NDVI from 2000 to 2020 in the eastern route of the China-Mongolia-Russia Economic Corridor, a region with frequent ecological-economic interactions, and explained the main driving factors, influencing patterns, and degrees of grassland NDVI changes in different regions. Based on MODIS NDVI data, the study employs emerging spatiotemporal hotspot analysis, Maximum Relevance Minimum Redundancy (mRMR) feature selection, and Gaussian Process Regression (GPR) to reveal the spatiotemporal variation characteristics of grassland NDVI, while identifying long-term stable trends, and to select the most relevant and non-redundant factors to analyze the main driving factors of grassland NDVI change. Partial dependence plots were used to visualize the response and sensitivity of grassland NDVI to various factors. The results show the following: (1) From 2000 to 2020, the NDVI of grassland in the study area showed an overall upward trend, from 0.61 to 0.65, with significant improvement observed in northeastern China and northeastern Russia. (2) Spatiotemporal hotspot analysis indicates that 51% of the area is classified as persistent hotspots for grassland NDVI, mainly distributed in Russia, whereas 12% of the area is identified as persistent cold spots, predominantly located in Mongolia. (3) The analysis of key drivers reveals that precipitation and land surface temperature are the dominant climatic factors shaping grassland NDVI trends, while the effects of soil conditions and human activity vary regionally. In China, NDVI is primarily driven by land surface temperature (LST), GDP, and population density; in Mongolia, precipitation, LST, and GDP exert the strongest influence; whereas in Russia, livestock density and soil organic carbon play the most significant roles. (4) For the whole study area, in persistent cold spot areas of grassland NDVI, the negative effects of rising land surface temperature were most pronounced, reducing NDVI by 36% in the 25-40 degrees C range. The positive effects of precipitation on NDVI were most evident under low to moderate precipitation conditions, with the effects diminishing as precipitation increased. Soil moisture and soil pH have stronger effects in persistent hotspot areas. Regarding human activity factors, the livestock factor in Mongolia shows an inverted U-shaped relationship with NDVI, and increasing population density contributed to grassland degradation in persistent cold spots. Proper grazing intensity regulation strategy is crucial in these areas with inappropriate grazing intensity, while social and economic activities promoted vegetation cover improvement in persistent hotspots in China and Russia. These findings provide practical insights to guide grassland ecosystem restoration and ensure sustainable development along the eastern route of the China-Mongolia-Russia Economic Corridor. China should prioritize ecological compensation policies. Mongolia needs to integrate traditional nomadic grazing with modern practices. Russia should focus on strengthening regulatory frameworks to prevent the over-exploitation of grasslands. Especially for persistent cold spot areas of grassland NDVI in Mongolia and Russia that are prone to grassland degradation, attention should be paid to the significant negative impact of livestock on grassland.
DOI:
10.3390/rs17050867
ISSN:
2072-4292