Publications

Deng, SQ; Bai, T; Chen, Z; Chen, YP (2025). A Novel Aerosol Optical Depth Retrieval Method Based on SDAE from Himawari-8/AHI Next-Generation Geostationary Satellite in Hubei Province. REMOTE SENSING, 17(8), 1396.

Abstract
Atmospheric aerosols play an important role in the ecological environment, climate change, and human health. Aerosol optical depth (AOD) is the main measurement of aerosols. The next-generation geostationary satellite Himawari-8, loaded with the Advanced Himawari Imager (AHI), provides observation-based estimates of the hourly AOD. However, a highly accurate evaluation of AOD using AHI is still limited. In this paper, we establish a Stacked Denoising AutoEncoder (SDAE) model to retrieve highly accurate AOD using AHI. We explore the SDAE to retrieve AOD by taking the ground-observed AOD as the output and taking the AHI image, the month, hour, latitude, and longitude as the input data. This approach was tested in the Hubei province of China. Traditional machine learning methods such as Extreme Learning Machines (ELMs), BackPropagation Neural Networks (BPNNs), and Support Vector Machines (SVMs) are also used to evaluate model performance. The results show that the proposed method has the highest accuracy. We also compare the proposed method with ground-observed AOD measurements at the Wuhan University site, showing good consistency between the satellite-retrieved AOD and the ground-observed value. The study of the spatiotemporal change pattern of the hourly AOD in the Hubei province shows that the algorithm has good stability in the face of changes in the angle and intensity of sunlight.

DOI:
10.3390/rs17081396

ISSN:
2072-4292