Publications

Cao, YJ; Chen, C; Yu, HX; Sun, XB; Liu, X; Gu, HR; Xie, YS; Hong, J; Li, ZQ (2025). Monitoring of aerosol optical-microphysical properties from DPC/GF-5(02): A case study of dust event in north China plain. ATMOSPHERIC ENVIRONMENT, 352, 121193.

Abstract
Atmospheric aerosol is an essential component of the atmosphere, with a significant radiative forcing impact. Aerosol influences the processes of radiation transmission, energy cycle, climate change and Earth-atmosphere interaction, and it is inextricably linked to environmental protection and human health. As coarse mode dominant absorptive particles, dust aerosol has a complex effect on climate (cooling in shortwave and warming in longwave) and is easy to cause human respiratory diseases. In this study, the Generalized Retrieval of Atmosphere and Surface Properties (GRASP) algorithm, which supports simultaneous retrieval of multiple aerosol optical and microphysical parameters with measurements from different sources and levels, is applied to the Directional Polarimetric Camera (DPC) measurements on board the Chinese Gaofen-5 (02) satellite. The optical and microphysical properties of aerosols in the Beijing-Tianjin-Hebei region from April to June in 2023 are obtained, and a dust event is tracked. The results show that DPC/GRASP method is capable to retrieve aerosol optical and microphysical properties in the Beijing-Tianjin-Hebei region, and is highly correlated with AERONET, and can be used to identify the evolution process of dust weather. It provides a new method and process scheme for the efficient and accurate acquisition of aerosol optical and microphysical properties in large areas by integrating various aerosol observation platform data in the future, and provides a new reference for the study of the evolution of dust weather and the diffusion of dust aerosol.

DOI:
10.1016/j.atmosenv.2025.121193

ISSN:
1873-2844