Publications

Huang, SD; Chu, C; Kang, QW; Li, YJ; Liang, YY; Li, R; Wang, J (2025). Response of Spring Phenology to Pre-Seasonal Diurnal Warming in Deciduous Broad-Leaved Forests of Northern China. FORESTS, 16(4), 638.

Abstract
Preseason temperature has always been considered the most critical factor influencing vegetation phenology in the northern hemisphere. While numerous studies have examined the impact of daytime and nighttime warming on vegetation phenology in this region, the specific influence of day and night warming on deciduous broad-leaved forests (DBFs) in Northern China, where significant temperature variations occur between day and night, remains unclear. Furthermore, the sensitivity of daytime and nighttime warming during different preseason periods to phenology has not been quantitatively understood. We analyzed GIMMS3g NDVI data from 1985 to 2015 and employed a double logistic regression model to determine the phenological start of the season (SOS) for DBF in Northern China. To control for monthly precipitation effects, we conducted partial correlation analysis between monthly mean maximum daytime temperature (Tday_max), monthly mean minimum nighttime temperature (Tnight_min), diurnal temperature variation (DTR), and SOS. Our findings over the past 31 years indicate that 75.98% of the area exhibited an advanced trend, with an overall advance of 1.7 days per decade. Interestingly, regardless of Tday_max, Tnight_min, or DTR, most areas had a preseason length of 1 month, accounting for 50.26%, 34.45%, and 44.39%, respectively. Furthermore, approximately 50.68% of the area exhibited a significant negative correlation between preseason temperature and SOS for Tday_max, 34.02% for Tnight_min, and 35.80% for DTR. It can be found that the response of the SOS advance to Tday_max in DBFs in Northern China is more obvious than that to Tnight_min and DTR. Our study revealed that the difference in day and night temperature warming on DBFs in Northern China is not pronounced. Specifically, SOS advanced by 1.8 days, 1.98 days, and 1.95 days for every 1 degrees C increase in Tday_max, Tnight_min, and DTR, respectively. However, it is important to note that the distribution of advanced days resulting from the warming of these three preseason temperature indicators exhibited spatial heterogeneity. Although many studies have already established the influence of various meteorological indicators on spring phenology, determining which meteorological indicators should be employed to quantify their impact on phenology in different regions and vegetation types remains a subject for further exploration and investigation in the future.

DOI:
10.3390/f16040638

ISSN:
1999-4907