Publications

Chen, L; Liu, LZ; Liu, SS; Shi, ZY; Shi, CH (2025). The Application of Remote Sensing Technology in Inland Water Quality Monitoring and Water Environment Science: Recent Progress and Perspectives. REMOTE SENSING, 17(4), 667.

Abstract
Due to its long-term and high-frequency observation capabilities, remote sensing is widely recognized as an indispensable and preferred technology for large-scale and cross-regional water quality monitoring. This paper comprehensively reviews the recent progress of remote sensing for water environment monitoring, predominantly focusing on remote sensing data sources, inversion indices, and inversion models. Specifically, we summarize the inversion methods for commonly monitored water quality parameters, including optically active constituents (such as chlorophyll-a, colored dissolved organic matter, total suspended solids, and water clarity) and non-optically active constituents (including total nitrogen, total phosphorus, and chemical oxygen demand). Furthermore, the applications of remote sensing in the field of environmental sciences such as spatiotemporal evolution and driver factor analysis of water quality, carbon budget research, and pollution source identification are also systematically reviewed. Finally, we propose that atmospheric correction algorithm improvement, multi-source data fusion, and high-precision large-scale inversion algorithms should be further developed to reduce the current dependence on empirical observation algorithms in remote sensing and overcome the limitations imposed by temporal and spatial scales and that more inversion models for non-optically active parameters should be explored to realize accurate remote sensing monitoring of these components in the future. This review not only enhances our understanding of the critical role of remote sensing in inland water quality monitoring but also provides a scientific basis for water environment management.

DOI:
10.3390/rs17040667

ISSN:
2072-4292