Publications

Vijayakumar, K; Devara, PCS; Rao, SVB; Jayasankar, CK (2016). Dust aerosol characterization and transport features based on combined ground-based, satellite and model-simulated data. AEOLIAN RESEARCH, 21, 75-85.

Abstract
In this paper, we study aerosol characteristics over an urban station in Western India, during a dust event that occurred between 19 and 26 March 2012, with the help of ground-based and satellite measurements and model simulation data. The aerosol parameters are found to change significantly during dust events and they suggest dominance of coarse mode aerosols. The fine mode fraction, size distribution and single scattering albedo reveal that dust (natural) aerosols dominate the anthropogenic aerosols over the study region. Ground-based measurements show drastic reduction in visibility on the dust-laden day (22 March 2012). Additionally, HYSPLIT model and satellite daily data have been used to trace the source, path and spatial extent of dust storm events. Most of the dust aerosols, during the study period, travel from west-to-east pathway from source-to-sink region. Furthermore, aerosol vertical profiles from CALIPSO and synoptic meteorological parameters from ECMWF re-analysis data reveal a layer of thick dust extending from surface to an altitude of about 4 km, and decrease in temperature and increase in specific humidity, respectively. The aerosol radiative forcing calculations indicate more cooling at the surface and warming in the atmosphere during dust event. The results of satellite observations are found to have good consistency with ground-based air quality measurements. Synthesis of satellite data integrated with ground-based observations, supplemented by model analysis, is found to be a promising technique for improved understanding of dust storm phenomenon and its impact on regional climate. (C) 2016 Elsevier B.V. All rights reserved.

DOI:
10.1016/j.aeolia.2016.03.003

ISSN:
1875-9637